
django-contactme-form Documentation
Release 1.3.0

Daniel Rus Morales

May 27, 2017

Contents

1 Demo projects 3
1.1 Demo quick setup . 3
1.2 Email settings . 3
1.3 Register a signal receiver . 4

2 Tutorial 5
2.1 Installation . 5
2.2 Configuration . 5
2.3 Workflow . 6
2.4 Signals and receivers . 7

3 Signals 9
3.1 Confirmation will be requested . 9
3.2 Confirmation has been requested . 9
3.3 Confirmation has been received . 9

4 Templatetags 11
4.1 render_contact_form . 11

5 Settings 13
5.1 CONTACTME_MSG_MAX_LEN . 13
5.2 CONTACTME_SALT . 13
5.3 CONTACTME_NOTIFY_TO . 13

6 Templates 15

7 Quick start 17

8 Workflow in short 19

i

ii

django-contactme-form Documentation, Release 1.3.0

django-contactme provides a simple contact form that only hits the database when the user has visited the confirma-
tion URL. Emails are threaded to avoid response blocking. It comes with a complete unittest set for both the backend
functionality and the Jquery plugin.

Version 1.3 is compatible with:

• Django 1.9 under Python 2.7, 3.4, 3.5

• Django 1.8 under Python 2.7, 3.4, 3.5

Version 1.2 is compatible with:

• Django 1.8 under Python 2.7, 3.4

• Django 1.7 under Python 2.7, 3.4

• Django 1.6 under Python 2.7, 3.4

• Django 1.5 under Python 2.7, 3.4

• Django 1.4 under PYthon 2.7

Table of contents:

Contents 1

django-contactme-form Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Demo projects

The source package of django-contactme comes with several demo projects to see the application in action:

• bare_demo is the simplest demo possible.

• bare_demo_with_ajax is the same previous example plus Ajax functionality provided by jquery.
djcontactme.js, the jquery plugin that comes with the application.

• crispy_forms_demo is an example of how to use django-contactme with django-crispy-forms.

Demo quick setup

Demo projects live inside the example project in app’s root directory.

The simplest and less interfeing way to run the demo projects is by creating a virtualenv for django-contactme. Then:

1. cd into the any of the demo directories.

2. Run python manage migrate to create a minimal SQLite db for the demo.

3. Run python manage runserver and browse http://localhost:8000

In addition, crispy_forms_demo requires the crispy_forms package:

$ pip install django-crispy-forms

Email settings

By default the demo project send email messages to the standard output. You can customize the email settings to send
actual emails.

Edit the settings.py module, go to the end of the file and customize the following entries:

3

http://django-crispy-forms.readthedocs.org/en/latest/
http://localhost:8000

django-contactme-form Documentation, Release 1.3.0

EMAIL_HOST = "" # for gmail it would be: "smtp.gmail.com"
EMAIL_PORT = "" # for gmail: "587"
EMAIL_HOST_USER = "" # for gmail: user@gmail.com
EMAIL_HOST_PASSWORD = ""
EMAIL_USE_TLS = True # for gmail

DEFAULT_FROM_EMAIL = "Your site name <user@gmail.com>"
SERVER_EMAIL = DEFAULT_FROM_EMAIL

Fill in actual EMAIL settings above, and comment out the
following line to let the django demo sending actual emails
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

CONTACTME_NOTIFY_TO = "Your name <user@gmail.com>"

The domain used in the links sent by email refers to example.com and thus are not associated with your django
development web server. Change the domain name through the admin interface, sites application, to something like
localhost:8000 so that URLs in email messages match your development server.

Register a signal receiver

After trying the demo site you may like to add a receiver for any of the signals sent during the workflow.

Read the entry on Signals to know more about django-contactme signals. The section Signals and receivers in the
Tutorial shows a use case.

4 Chapter 1. Demo projects

CHAPTER 2

Tutorial

django-contactme is a simple reusable app. This is a tutorial as simple as the app itself.

Installation

Installing django-contactme is just a matter of checking out the package and adding it to your project or PYTHONPATH.

Use git, pip or easy_install to check out django-contactme from Github or get a release from PyPI:

1. Use git to clone the repository, and then install the package (read more about git):

• git clone git://github.com/danirus/django-contactme.git and

• python setup.py install

2. Or use pip (read more about pip):

• Do pip install django-contactme

3. Or use easy_install (read more about easy_install):

• Do easy_install django-contactme

Configuration

1. Add 'django_contactme' to your INSTALLED_APPS setting.

2. Add url(r'^contact/', include('django_contactme.urls')) to your urls.py.

3. Create a django_contactme directory in your templates directory and copy the default templates from
django-contactme into the new created directory.

4. Run python manage.py migrate that creates the contactme_contact_msg table.

5

http://github.com/danirus/django-contactme
http://pypi.python.org/
http://git-scm.com/
http://www.pip-installer.org/
http://packages.python.org/distribute/easy_install.html

django-contactme-form Documentation, Release 1.3.0

Customization

1. Optionally you can add some settings to control django-contactme behaviour (see Settings), but they all have
sane defaults.

2. Customize the templates (see Templates) in your django_contactme templates directory to make them fit
in your design. Look at the crispy_forms_demo to see an example of templates customisation.

Workflow

Workflow described in 3 actions:

1. Get the Contact Form.

1. Render the Contact Form page. Omit this at will by using the render-contact-form templatetag (see
Templatetags) in your own templates.

2. Post the Contact Form.

1. Check if there are form security errors. django_contactme forms are protected with timestamp,
security_hash and honeypot field, following the same approach as the built-in Django Comments
Framework. In case of form security errors send a 400 code response and stop.

2. Check whether there are other form errors (fields name, email and message) or whether the user clicked on
the preview button. In such a case render the Contact Form again, with the form errors if any, and stop.

3. Send signal django_contactme.signals.confirmation_will_be_requested. If any receiver
returns False, send a discarded contact message response to the user and stop.

4. Send a confirmation email to the user with a confirmation URL.

5. Send signal django_contactme.signals.confirmation_requested.

6. Render a “confirmation has been sent to you by email” template.

3. Visit the Confirmation URL.

1. Check whether the token in the confirmation URL is correct. If it isn’t raise a 404 code response and stop.

2. Create a ContactMsg model instance with the message data secured in the URL.

3. Send signal confirmation_received. If any receiver return False, send a discarded contact message
response to the user and stop.

4. Send an email to settings.CONTACTME_NOTIFY_TO addresses indicating that a new Contact Message
has been received.

5. Render a “your contact request has been received, thank you” template.

Creating the secure token for the confirmation URL

The Confirmation URL sent by email to the user has a secured token with the contact form data. To create the token
django-contactme uses the module signed.py authored by Simon Willison and provided in Django-OpenID.

django_openid.signed offers two high level functions:

• dumps: Returns URL-safe, sha1 signed base64 compressed pickle of a given object.

• loads: Reverse of dumps(), raises ValueError if signature fails.

A brief example:

6 Chapter 2. Tutorial

https://docs.djangoproject.com/en/1.3/ref/contrib/comments/
https://docs.djangoproject.com/en/1.3/ref/contrib/comments/
http://github.com/simonw/django-openid

django-contactme-form Documentation, Release 1.3.0

>>> signed.dumps("hello")
'UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E')
'hello'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E-modified')
BadSignature: Signature failed: QLtjWHYe7udYuZeQyLlafPqAx1E-modified

There are two components in dump’s output UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E,
separatad by a ‘.’. The first component is a URLsafe base64 encoded pickle of the object passed to dumps(). The
second component is a base64 encoded hmac/SHA1 hash of “$first_component.$secret”.

Calling signed.loads(s) checks the signature BEFORE unpickling the object -this protects against malformed pickle
attacks. If the signature fails, a ValueError subclass is raised (actually a BadSignature).

Signals and receivers

The workflow mentions that django-contactme sends 3 signals:

1. confirmation_will_be_requested: Sent just before a confirmation message is requested.

2. confirmation_requested: Sent just after a confirmation message is requested.

3. confirmation_received: Sent just after a confirmation has been received.

See Signals to know more.

You may want to extend django-contactme by registering a receiver for any of this signals.

An example function receiver might check the datetime a user submitted a contact message and the datetime the
confirmation URL has been clicked. If the difference between them is over 7 days the message could be discarded
with a graceful “sorry, too old message” template.

Extending the demo site with the following code would do the job:

#--
append the code below to any demo project views.py module:

from datetime import datetime, timedelta
from django_contactme import signals

def check_submit_date_is_within_last_7days(sender, data, request, **kwargs):
plus7days = timedelta(days=7)
if data["submit_date"] + plus7days < datetime.now():

return False
signals.confirmation_received.connect(check_submit_date_is_within_last_7days)

#---
change get_instance_data in django_contactme/forms.py to cheat a bit and
make django believe that the contact form was submitted 7 days ago:

def get_instance_data(self):
"""
Returns the dict of data to be used to create a contact message.
"""
from datetime import timedelta # ADD THIS

2.4. Signals and receivers 7

django-contactme-form Documentation, Release 1.3.0

return dict(
name = self.cleaned_data["name"],
email = self.cleaned_data["email"],
message = self.cleaned_data["message"],

submit_date = datetime.datetime.now(), # COMMENT THIS
submit_date = datetime.datetime.now() - timedelta(days=8), # ADD THIS

)

Try the demo site again and see that the django_contactme/discarded.html template is rendered after clicking on the
confirmation URL.

8 Chapter 2. Tutorial

CHAPTER 3

Signals

List of signals sent by the django-contactme app.

Confirmation will be requested

django_contactme.signals.confirmation_will_be_requested Sent just before a confirmation message is requested.

A message is sent to the user right after the contact form is been posted and validated to verify the user’s email
address. This signal may be used to ban email addresses or check message content. If any receiver returns False
the process is discarded and the user receives a discarded message.

Confirmation has been requested

django_contactme.signals.confirmation_requested Sent just after a confirmation message is requested.

A message is sent to the user right after the contact form is been posted and validated to verify the user’s email
address. This signal may be uses to trace contact messages posted but never confirmed.

Confirmation has been received

django_contactme.signals.confirmation_received Sent just after a confirmation has been received.

A confirmation is received when the user clicks on the link provided in the confirmation message sent by email.
This signal may be used to validate that the submit date stored in the URL is no older than a certain time. If any
receiver returns False the process is discarded and the user receives a discarded message.

See a simple example of a receiver for this signal: Signals and receivers, in the Tutorial.

9

django-contactme-form Documentation, Release 1.3.0

10 Chapter 3. Signals

CHAPTER 4

Templatetags

django-contactme has a templatetag to render the contact form.

render_contact_form

Many sites use a hidden div that fadeIn/slideUp when the user clicks on the contact me/us link. Use
render_contact_form templatetag to render the contact form anywhere in your template. It uses the
django_contactme/form.html template to render the form.

11

django-contactme-form Documentation, Release 1.3.0

12 Chapter 4. Templatetags

CHAPTER 5

Settings

This is the comprehensive list of settings django-contactme recognizes.

CONTACTME_MSG_MAX_LEN

Optional

This setting establish the maximum length of the message a user may write in the form.

An example:

CONTACTME_MSG_MAX_LEN = 3000

Defaults to 3000.

CONTACTME_SALT

Optional

This setting establish the ASCII string extra_key used by signed.dumps to salt the contact form hash. As signed.
dumps docstring says, just in case you’re worried that the NSA might try to brute-force your SHA-1 protected secret.

An example:

CONTACTME_SALT = 'G0h5gt073h6gH4p25GS2g5AQ25hTm256yGt134tMP5TgCX$&HKOYRV'

Defaults to an empty string.

CONTACTME_NOTIFY_TO

Optional

13

django-contactme-form Documentation, Release 1.3.0

This setting establish the email address that will be notified on new contact messages. May be a list of email addresses
separated by commas.

An example:

CONTACTME_NOTIFY_TO = 'Alice <alice@example.com>, Joe <joe@example.com>'

Defaults to settings.ADMINS.

14 Chapter 5. Settings

CHAPTER 6

Templates

List of template files coming with django-contactme.

django_contactme/contactme.html Entry point for the django-contactme form. Template rendereded when visiting
the /contact/ URL. It makes use of the render_contact_form templatetag (see Templatetags).

django_contactme/form.html Used by the templatetag render_contact_form (see Templatetags).

django_contactme/preview.html Rendered either when the contact form has errors or when the user click on the
preview button.

django_contactme/confirmation_email.txt Email message sent to the user when the contact form is clean, after the
user clicks on the post button.

django_contactme/confirmation_sent.html Rendered if the contact form is clean when the user clicks on the post
button and right after sending the confirmation email.

django_contactme/discarded.html Rendered if a receiver of the confirmation_received signal returns False.
The signal confirmation_received is sent when the user click on the URL sent by email to confirm the
contact message. See Signals.

django_contactme/accepted.html Rendered when the user click on the URL sent by email to confirm the contact
message. If there are no receivers of the signal confirmation_received or none of the receivers returns
False, the template is rendered and a ContactMsg model instance is created.

15

django-contactme-form Documentation, Release 1.3.0

16 Chapter 6. Templates

CHAPTER 7

Quick start

1. Add django_contactme to INSTALLED_APPS.

2. Add url(r'^contact/', include('django_contactme.urls')) to your root URLconf.

3. Run the migrate command to apply migrations.

4. Run the runserver command and check the new contact form at http://localhost:8000/contact/

17

http://localhost:8000/contact/

django-contactme-form Documentation, Release 1.3.0

18 Chapter 7. Quick start

CHAPTER 8

Workflow in short

The user...

1. Clicks on the contact me/us link of your site.

2. Fills in the contact form data with her name, email address and message, and clicks on preview.

3. She finally clicks on post and submit the form.

4. Then django-contactme:

• Creates a token with the contact form data.

• Sends an email to the user with a confirmation URL containing the token.

• And shows a template informing the user that she must click on the link to confirm the message.

5. The user receives the email, opens it, and clicks on the confirmation link.

6. Then django-contactme:

• Verifies the token and creates a ContactMsg model instance.

• Sends an email to the addresses listed in CONTACTME_NOTIFY_TO, to notify that a new contact message has
reached the database.

• And finally shows a template being grateful for the message.

Read a longer workflow description in the Workflow section of the Tutorial.

19

	Demo projects
	Demo quick setup
	Email settings
	Register a signal receiver

	Tutorial
	Installation
	Configuration
	Workflow
	Signals and receivers

	Signals
	Confirmation will be requested
	Confirmation has been requested
	Confirmation has been received

	Templatetags
	render_contact_form

	Settings
	CONTACTME_MSG_MAX_LEN
	CONTACTME_SALT
	CONTACTME_NOTIFY_TO

	Templates
	Quick start
	Workflow in short

